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First, Thank You to the Organizing Committee for invitation
and this opportunity

* I have had the opportunity to engage with the CSSCI for the past 30 years
1n various roles.

* Nice to see many long-time friends as well as new friends and colleagues.

* I am happy to note that CSSCI 1s making great progress in these
supposedly challenging times.

* [ hope my presentation today will offer optimism for combustion science
and technology and show how combining these two seemingly disparate
efforts can provide innovative solutions to meet the energy needs of today
and tomorrow. ’




Engine and Combustion Laboratory (ECL) at
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Combustion Research
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Focus of this talk: Combustion for Diesel Engines

Introduced in 1897
26% efficiency
better than
steam engine (<7%)
gasoline engine (17%)

High Flame
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High Pressure Spray Combustion Facility

Many existing facilities utilize a constant
——————————— Injector

volume test chamber

A pre-combustion process in BATCH Coolant Inlet ———————— bt gt - Coolant Exit
mode is used to attain high-pressure,

high-temperature ambient conditions of  Ajr Exit Annulus ~Injector

the experiment Cooling Jacket

100mm
Optical Access

We built a contact pressuretest T e Flow
chamber with a continuous flow of Earnin Conditioner
compressed preheated air riEHew

Experiments with ambient air at up to ¥ e o

60 bar and 1000 C can be performed in , X A'r s Linection

guick succession, up 8 injections per
minute to acquire statistically significant
data set of fuel injections

Connection to Heater
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Engine out soot depends upon the Lift-off Length or axial distance where flame stabilizes.



Two-Color Pyrometry Camera
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High-Speed Spray Diagnostics



Rainbow Schlieren Deflectometry (RSD)
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RSD Images and Local Mole Fraction Contours in
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Rainbow Schlieren Images
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Liquid Length and Vapor Length
Requires multiple diagnostics

Liquid regime
Mie scattering
Diffuse background imaging
(DBI)

Vapor regime

gﬁhgeren . 0 5 10 15 20 25 30 35 40 45 50 55 60
AGOWETaphy Distance from Injector [mm]
Rayleigh scattering

Idicheria et al (2007) 12/37



RSD Image Analysis — Two
signals in one image
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Table 2. Comparison of Liquid Boundary, Outer
Liquid Boundary and Siebers’ Model for the Two
n-Heptane Cases

Case Liquid Outer Liquid Siebers’
Length (mm) Length (mm) Model (mm)

1 173+ 1.1 200+1.2 20.2

2 9.0+0.7 10,3 £ 1.0 10.8




Summary Remarks

MISSIONS = HIGH EFFICIENCY = FUEL FLEXIBILITY

* RSD provides greater insight compared to conventional schlieren, and
yet it is simple to implement. Recommend community to use RSD more

regularly.
— Agrawal, A.K., and Wanstall, C.T., 2018, Rainbow Schlieren Deflectometry for Scalar Measurements in Fluids
Flows, Journal of Flow Visualization and Image Processing, 25(3-4).

* Despite being line-of-sight, 2CP can provide useful information about
soot, at least for qualitative comparisons. Recommend users to

implement the novel 2CP setup discussed here.

— Reggeti, S. A., Agrawal, A. K., and Bittle, J. A., 2019. Two-color pyrometry system to eliminate optical errors
for spatially resolved measurements in flames. Applied Optics, 58(32), 8905-8913.

* Liquid length determined by physical properties is an important
parameter that can affect lift-off length and thus, soot emissions in

diesel flames.

— Parker, A., Reggeti, S.A., Bittle, J.A. and Agrawal, A.K., 2023. Limitations of cetane number to predict
transient combustion phenomena in high-pressure fuel sprays. Combustion and Flame, vol. 251, p.112723.
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Two-Color Pyrometry (2CP)

» 2CP 1s a line-of-site technique to
measure soot temperature and soot
concentration

* Soot particles radiate visible light

* Radiative emission can be related
to soot temperature

3 (W/m?um)
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* Radiative emission data at two
distinct wavelengths are necessary
to resolve the emissivity

* Wavelengths of 550 nm and 650
nm are used to avoid specific band LWl F 210
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* Measurements will not be accurate i1f emissions
from two wavelengths are viewed at different
angles - Parallax

=) Identical LOS for both
—) wavelengths

= Parallax angle between
) LOS of each wavelength

o> o
e Se i e 3
V o= ‘_‘




2CP Equations at a Pixel Location

Cq
Planck’s Law: Epar= C, Eq. (1)
15 [e( /rr) _ 1]
Emissive power for a
non-blackbody: E)(T) = €qEp p(T) = Ep(Ty) | E4- (2
Empirical Emissivity-Soot €, =1-— e ~KL/2® Eq. (3)
relationship :
1.4 21,4

e(C2/14T) _1q e(C2/22T) _ 1
Combining: KL = [1 B (e(Cz/)l1Ta1) _ 1)] - [1 N (e(Cz/)lzTaz) _ 1)] Eq- &)

Soot Mass: ms = Aapx 61 E(m) z KL Eq. (5)




Importance of View Angles

* Measurements will not be accurate 1f emissions
from two wavelengths are viewed at different
angles - Parallax

|=> Identical LOS for both
—) wavelengths

=) Parallax angle between
—) LOS of each wavelength




Multiple Cameras or Image Doubler cause Parallax

Test Media
(Soot Cloud)
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Beam splitter solves parallax but introduces
path length error Test Mt

(Soot Cloud)

Flame Images - Different Path Lengths
Beamsplitter -
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A Novel Optical Setup

* No parallax effect and equal path lengths

(a) Test Media (b)
(Soot Cloud)

Bandpass Filters
Knife-Edge Prism

we Turning Mirror

Beamsplitter +
Bandpass Filters

Camera

Turning Mirror o



Accurate Pixel Mapping with New Design
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Experiment Conditions

* Actual ambient air and fuel injection conditions for 500 repeated fuel
injection experiments

e Variation 1s indicated by 95% confidence interval of the mean

Property Units Value
Ambient Air
Temperature (K] 807 4
Pressure [M Pal 3.0 £0.02
Density [kg/m?®] 13.0 £ 0.2
Fuel and Injector
Type n-heptane
Temperature K] 358 0.2
Pressure (M Pal 98.9 +0.8
Injector Orifice Size  [um)] 104
Injection Duration  [ms] 4.5

24 /68
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Summary Remarks

* RSD provides greater insight compared to conventional schlieren, and yet it is

simple to implement. Recommend community to use RSD more regularly.

« Agrawal, A K., and Wanstall, C.T., 2018, Rainbow Schlieren Deflectometry for Scalar Measurements in
Fluids Flows, Journal of Flow Visualization and Image Processing, 25(3-4).

* Despite being line-of-sight diagnostics, 2CP can provide useful information
about soot for qualitative comparisons. Recommend users to implement the
novel 2CP setup discussed here.

* Reggeti, S. A., Agrawal, A. K., and Bittle, J. A., 2019. Two-color pyrometry system to eliminate optical
errors for spatially resolved measurements in flames. Applied Optics, 58(32), 8905-8913.

* Liquid length determined by physical properties is an important parameter
that can affect lift-off length and thus, soot emissions in diesel flames.

* Parker, A., Reggeti, S.A., Bittle, J.A. and Agrawal, A.K., 2023. Limitations of cetane number to predict

transient combustion phenomena in high-pressure fuel sprays. Combustion and Flame, vol. 251,
p.112723.
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Physical versus chemical properties

Jested Fuels * Ignition delay has well-defined

_ statistical distribution with Injections

53.8 38 * N-heptane and CN54 have similar
distributions as expected

* CN40 has longer ignition delay (15 stage
and 2"d stage) as expected
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Composite Images

Lift column : RSD image superimposed with soot mass

Right column: Refractive index superimposed with OH* chemiluminescence

* Why CN54 flame has longer lift-off length znd much less soot compared to N-heptane flame
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Role of Liquid Length, physical propertles
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* Ignition location is
different for three
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Summary Remarks

* RSD provides greater insight compared to conventional schlieren, and yet it is

simple to implement. Recommends community to use RSD more regularly.

« Agrawal, A K., and Wanstall, C.T., 2018, Rainbow Schlieren Deflectometry for Scalar Measurements in
Fluids Flows, Journal of Flow Visualization and Image Processing, 25(3-4).

* Despite being line-of-sight, 2CP can provide useful information about soot, at
least for qualitative comparisons. Recommend users to implement the novel
2CP setup discussed here.

* Reggeti, S. A., Agrawal, A. K., and Bittle, J. A., 2019. Two-color pyrometry system to eliminate optical
errors for spatially resolved measurements in flames. Applied Optics, 58(32), 8905-8913.

* Liquid length determined by physical properties is an important parameter
that can affect lift-off length and thus, soot emissions in diesel flames.

* Parker, A., Reggeti, S.A., Bittle, J.A. and Agrawal, A.K., 2023. Limitations of cetane number to predict

transient combustion phenomena in high-pressure fuel sprays. Combustion and Flame, vol. 251,
p.112723.
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Despite combustion research, diesel engines rely increasingly on after-
treatment systems to meet the emissions regulation. Significant Weight,

Space, Cost.

EGR Cooler

DEF Tank

\ Engine Coolant Lines

* Diesel Oxidizing Catalyst
(DOC) — CO and UHC to
CO2 and H20

* Diesel Particulate Filter
(DPF) — Filters PM to
acceptable levels

* Diesel Exhaust Fluid (DEF)
— followed by Selective

Catalytic Reduction unit
(SCR) to reduce NOx to
acceptable levels.

32




Cold Flow Optical Chamber

Injection

Example
Spray Pattern

* High-speed imaging allows exploration of new concepts in a relatively simple experiment
* The chamber has a diameter of 120.7mm with a depth of 33.3 mm

* Chamber can be pressurized to achieve engine-like ambient densities

* Fuel is injected at engine realistic pressures.

* LED strips around the Lexan cylinder illuminate the chamber evenly




Conventional Diesel Combustion (CDC)

* Centrally located, multi-hole injector injects fuel almost universally in
current diesel engines

* The diffusion flame impinges on the wall requiring cooling and thus,
loss 1n thermal efficiency

* Impingement at the wall leads to flame quenching and/or liquid wall
wetting which produces soot, CO, and UHCs.

* Jets compete to access air, especially in the near field

34




Conventional Diesel Combustion (CDC) — CFD Results

T=15ms

T=2.0ms

b)

VS
IN

* Computed OH mass fraction at
different times (top) illustrating
flame impingement

* Temperature contours illustrating
effects of localized hot spots
resulting from flame 1impingement
(bottom%

* What 1f we could
eliminate wall
impingement and flame
interactions ?




Peripheral Fuel Injection (PeFI)

* Fuel 1s injected radially inwards from the periphery using multiple
single-hole injectors

* No wall impingement
* Unfortunately, jets interact and form a toroidal vortex at the center

* This leads to undesirable competition for combustion air at the center
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Peripheral Fuel Injection
(PeFI) — Angled Injection

* Angled PeFI injection
eliminates jet interactions

e Jets/flames remain in the
outer regions to enhance
access to air for both
premixed and diffusion
combustion modes

* Note that the jets are also
orientated at an angle with
respect to the screen

0 Degree

30 Degree




Angled PeFI

e Contours of OH mass fraction

* PeFI-15 injection causes flame
interactions — too shallow angle

* PeFI-37.5 injection shows nearly
independent flames — optimum
angle

* No hot spots on the outer wall

c)

PeFI-37.5

B a0
MASSFRAC_OH: 6.0E-05 2.0E-04 34E-04 48E-04 6.2E-04 7.6E-04 9.1E-04
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A

A Heat Loss at Chamber Walls ..

e CDC: Sudden rise in heat loss after flame
impingement

* PeFI: Heat loss reduction of 53% (PeFI-
37.5 vs. CDC)

* PeFI creates insulated walls with a layer
of ambient air, to approach near adiabatic
conditions.

* The actual heat loss reduction could be
even higher since simulations are based
on a specified wall temperature

_ Outer Wall
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Slide 39

AAO Show contours plots here, not at the end.
Ajay Agrawal, 2023-07-29T08:00:12.380



Spray Volume (mm®)
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Ailr Entrainment
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* PeFI-37.5 provides up to 22% more air mass entrained into the flame
compared to CDC
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PeFI provides

* Faster HRR
* Faster burning

* Higher chamber
mean pressure

* Higher chamber
mean
temperature

* Higher thermal
efficiency (1-2%)
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Fuel Rate of Injection (ROI)

PeFI has higher ramp-up ROI o = | 3
. . . . o . . 2} E E
- This will improve entrainment and mixing in the —z E g -
£ 40 - 3
near field E :,
O 208 ——CDC TEES
E - - - PeFl1 (6) i
0.0 0.5 1.0 1.5
Time (ms aSOl)
% gy =D
E 3
£ 40 7 3
= 3
o
> 207 —cDe
§ E == PeFI (6) |
0.0 0.5 1.0 1.5

CDC 1njector PeFI injector

Time (ms aSO0l)

CDC and PeFI injection rates (a) and cumulative
volume (b) for 1000 bar rail pressure.
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Pressure
contours
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stream-
lines

CDC
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Increase in near-field air entrainment — Reduced

engine out soot emissions
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PeFI Summary

e Increased entrainment in the near-field. Leaner premixed flame at lift-off. Reduced
soot precursors and engine-out soot emissions

e Flame/jet impingement on wall is eliminated. Thus, reduced soot, UHC, and CO
emissions

e Significant reduction is heat loss to the coolant and thus, higher thermal efficiency

e But, can you put multiple single-hole injectors on an engine head ?
* Yes, we did it. It took several years to develop the hardware.
* We use off-the-shelf Bosch injectors.

* Ideally, we would like custom-designed injector to further miniature the system
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Single Cylinder Engine with Both CDC and PeFI

Valve Box

CDC Injector

/— Rocker Arm Stanchion

A | g {
=, B | PeFI Injector Plug
| | \'; - ;g

Coolant Heater

/——PeFI Injector Clamp

Caterpillar 3401 single cylinder engine (left) and modified head (right). 46




Test Results
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Summary Remarks

* PeFI opens up unparallel opportunity to improve diesel combustion and reduce need
for after-treatment systems

* We have just started this journey.

» Agrawal, A K., and Bittle, J., PERIPHERAL FUEL INJECTION FOR LOW
EMISSION AND HIGH EFFICIENCY DIESEL ENGINES," U.S. Patent
Application No. 63/529,925, filed July 31, 2023.

* Bogdanowicz, E.F., Loper, A., Bittle, J. and Agrawal, A K., 2024. Experimental
study of peripheral fuel injection for higher performance in diesel
engines. International Journal of Engine Research, p.146808 74241232007.

* Edward F. Bogdanowicz, Joshua Bittle, and Ajay K. Agrawal, 2024, “Numerical

investigation of peripheral fuel injection for higher performance in diesel engines,”
accepted, FUEL
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